
University of Southern California

Department of Contracts and Grants

Los Angeles, CA 90089-1147

Distributed VIRtual System (DIVIRS)

Project

formerly

Center for Experimental Research in

Parallel Algorithms, Software, and Systems

Semiannual Progress Report #13
March 1995

Principal Investigator:

Herbert Schorr

Co-principal Investigator

B. Clifford Neuman

USC/Information Sciences Institute

Prepared under NASA Cooperative Agreement NCC 2-539

for Henry Lum, Technical Officer

NASA Information Sciences Division 244-7

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the-official policies,

either expressed or implied, of the National Aeronautics and Space Administration, the Defense Advanced Research Projects Agency, or the US.
Government.



Semiannual Progress Report

Covers period 1 May 1994 through 30 November 1994

As outlined in our continuation proposal 92-ISI-50R (revised) on NASA cooperative agreement

NCC 2-539, we are (1) developing software, including a system manager and a job manager, that

will manage available resources and that will enable programmers to develop and execute parallel

applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes;

(2) developing communications routines that support the abstractions implemented in item one; (3)

continuing the development of file and information systems based on the Virtual System Model;

and (4) incorporating appropriate security measures to allow the mechanisms developed in items

1 through 3 to be used on an open network.

The goal throughout our work is to provide a uniform model that can be applied to both parallel

and distributed systems. We believe that multiprocessor systems should exist in the context of

distributed systems, allowing them to be more easily shared by those that need them. Our work

provides the mechanisms through which nodes on multiprocessors are allocated to jobs running

within the distributed system and the mechanisms through which files needed by those jobs can be

located and accessed.

The Prospero Resource Manager

Conventional techniques for managing resources in parallel systems perform poorly in large dis-

tributed systems. To manage resources in distributed parallel systems, we have developed resource

management tools that manage resources at two levels: allocating system resources to jobs as needed

(a job is a collection of tasks working together), and separately managing the resources assigned

to each job. The Prospero Resource Manager (PRM) presents a uniform and scalable model for

scheduling tasks in parallel and distributed systems. PRM provides the mechanisms through which

nodes on multiprocessors can be allocated to jobs running within an extremely large distributed

system.

The common approach of using a single resource manager to manage all resources in a large system

is not practical. As the system grows, a single resource manager becomes a bottleneck. Even within

large local multiprocessor systems the number of resources to be managed can adversely affect

performance. As a distributed system scales geographically and administratively, additional prob-

lems arise, such as latency, trust and security.

PRM addresses the bottleneck problems by using multiple resource managers, each controlling a

subset of the resources in the system, independent of other managers of the same type. The functions

of resource management are distributed across three types of managers: system managers, job

managers, and node managers. The complexity of these management roles is reduced because each

is designed to utilize information at an appropriate level of abstraction. __

-1-



Duringthereportingperiod,weextendedPRM'sresourceallocationandreleasepolicies.Depending
on its configuration,thesystemmanagermayallocateanodeto ajob for theentiredurationof the
job's execution,or for executingadesignatedsetof tasks.Theformerpolicy is moreefficient for
jobs in which tasksaredynamicallyspawned.The latter policy enablesthe systemmanagerto
preemptnodesfrom ajob, andforceits taskstocheckpoint(for taskscapableof checkpointing).It
is thenthejob manager'sresponsibilityto find analternatesetof nodesto migrateits tasksto.The
implementationallowsfor a defaultpolicy to beconfiguredxosuit theusers'requirements.

TodebugPRM applications we have developed debugging tools consisting of a command interface

at the front-end and task-monitors at the back-end. The interactive front-end enables the application

programmer to monitor and control program execution. At the back-end each target task is controlled

by a separate task monitor that is co-located with the target. We have adapted the Gnu Debugger

(gdb) to function as the task monitor and interact with the front end. Use of gdb gives the task

monitor all the features of a traditional debugger.

We have also added support for playback debugging using traces. When applications are linked

with an instrumented version of the communication library the communication activity of the

program can be captured in trace files. Invoking 'replay' at the command interface causes task-

monitors to use these trace files to replay programs and exactly recreate the sequence of events in

a program's history. Work is underway to incorporate checkpointing with debugging so that pro-

grams can be replayed from intermediate points in their execution histories.

We have updated PRM's libraries to fully support the interprocess communication interface provided

by the current release of PVM (Version 3.3.5). A group-server process now handles collective

operations such as broadcast, barrier synchronization and global reduction. The group server is

automatically spawned by the job manager when a group operation is first invoked by one of the

tasks.

We have continued the development of PRM software and documentation and are preparing it for

release to users outside ISI. This release will include portions of the Condor package that PRM uses

for checkpointing, patches that enable gdb to function as a task-monitor, a configuration script that

enables users to easily configure and build PRM on Sun3, Sparc and HPTxx platforms with the

desired options (such as checkpointing and playback debugging), and a start-up script for setting

up PRM environments.

After further refinement, a final software release will terminate our work on the Prospero Resource

Manager under the DIVIRS project. We will continue to support the software release and further

the development of PRM under new projects.

-2-



The Prospero File System and Directory Service

During the reporting period, we continued development of the Prospero File System and Directory

Service, a file system and directory service based on the Virtual System Model. As in the previous

reporting period, most of our development was directed toward moving Prospero from a prototype

to a production system. This included new database format, revision to the application programming

interfaces to provide a more consistent interface for files and directory objects, and adoption of a

uniform method for configuring clients.

Steven Augart implemented a new database/directory format for Prospero that combines attribute

information previously associated with a file or object, with the information associated with a

directory. Sung-Wook Ryu developed a database module that allows information in the format just

described to be stored in a common dbm database. The first change reduces the storage and i-nodes

required to maintain information on a Prospero server and improves performance. The dbm exten-

sion further reduces storage requirements, but locking and reliability issues make it suitable for

only certain applications.

Sio-Man Cheang developed a configuration package for Prospero that provides functionality similar

to that provided by the X Window system. All user runnable commands call the configuration

package to determine configuration parameters for network communication, gateways, debugging,

priorities, and security and payment options. The configuration package determines the configured

values by reading, in order, command line options, user-specific and system-specific configuration

files, and compile time definitions.

Electronic Commerce

As part of an AASERT award attached to the DIVIRS contract, and in conjunction with our efforts

on a separate contract for Security Infrastructure, Gennady (Ari) Medvinsky has been working on

electronic payment mechanisms for the Internet. As part of this effort, a prototype implementation

of NetCheque has been released on the Internet. Users registered with NetCheque accounting server

axe able to write checks to other users. When deposited, the check authorizes the transfer of account

balances from the account against which the check was drawn to the account to which the check

was deposited. Work is presently underway to integrate NetCheque with Prospero, so that payment

for information services can be processed automatically as information is retrieved.

Publications

The following paper appeared during the reporting period.

B. Clifford Neuman and Santosh Rao. The Prospero Resource Manager: A scalable framework for

processor allocation in distributed systems. Concurrency: Practice and Experience. Summer 1994

(copy attached).

-3-



AASERT

ARPA

DIVIRS

GDB

ISI

OCSG

PRM

PVM

USC

APPENDIX A - GLOSSARY

Augmentation Award for Science and Research Training

Advanced Research Projects Agency

Distributed Virtual Systems

Gnu Debugger

Information Sciences Institute

Open Computing Security Group

Prospero Resource Manager

Parallel Virtual Machine

University of Southern California

-4-



z
<
:E

u

_r

.J

<

(J

<

N

z

8

ee
J_ e_u



u+

,<
Z
,<

+
u

¢,,I

1+3

=<
,<

8

i,g



z
<
z
<

+

II



z
,(

Z

X

z

=E

:3

o



U

!io_ o _

•_= -_

•_..___ _



'_-_ _ -
.,,_ ._. ._ _. -_._..

_'a._

._ ___.-_!



<
z
<

iJ
,,4

v'l

_E

._ r,,

,<

,4
,u

.,o

E._
_ _._

Ill fJ

_" o

vl

e,t






